
PyVESC Documentation
Release 1.0

Liam Bindle

Mar 31, 2021

Contents

1 Quick Example 3

2 Installation 5

3 Usage 7

4 Messages 9

5 Setter Messages 11

6 Getter Messages 13

7 Implementing Additional Messages 15

8 Encoding 17

9 Decoding 19

10 Contributing 21

11 License 23

Index 25

i

ii

PyVESC Documentation, Release 1.0

PyVESC is aimed at being a easy to use and robust python implementation of the communication protocol used by the
VESC - Open Source ESC project by Benjamin Vedder. Its a great project with a really great community and I’d urge
anyone interested in motor controllers to take a look at it.

That being said, if you’re here you probably already know about it. This small project was written by Liam Bindle for
the University of Saskatchewan Space Design Team as our primary language for non-embedded system is Python. You
might wonder why you might need a library to handling packing and parsing VESC messages since Pythons standard
struct module is great for almost exaclty this. PyVESC’s usefulness comes from the fact that PyVESC is:

• Well tested

• Robust in handling corrupt packets in a buffer

• Messages are easily extensible so that PyVESC can be used as a generic message/codec protocol (ie. at the USST
we use PyVESC for sending messages to all of our embedded systems by Implementing Additional Messages)

• Implements a number of common-error catching exceptions to speed up your development

Contents 1

http://vedder.se/2015/01/vesc-open-source-esc/
https://usst.ca
https://docs.python.org/3.5/library/struct.html

PyVESC Documentation, Release 1.0

2 Contents

CHAPTER 1

Quick Example

This is just a quick example of how PyVESC can be used. First lets see how PyVESC can be used to go from a
message (VESCMessage) to a packet (bytes).

make a SetDutyCycle message
my_msg = pyvesc.SetDutyCycle(1e5)
print(my_msg.duty_cycle) # prints value of my_msg.duty_cycle
my_packet = pyvesc.encode(my_msg)
my_packet (type: bytes) can now be sent over your UART connection

Now lets look at how we can parse messages from a buffer (assuming the buffer is being filled by your UART connec-
tion)

buff is bytes filled from your UART connection
my_msg, consumed = pyvesc.decode(buff)
buff = buff[consumed:] # remove consumed bytes from the buffer
if my_msg:

print(my_msg.duty_cycle) # prints value of my_msg.duty_cycle

3

PyVESC Documentation, Release 1.0

4 Chapter 1. Quick Example

CHAPTER 2

Installation

PyVESC is available on the Python Package Index.

pip install pyvesc

5

https://pypi.python.org/pypi/pyvesc

PyVESC Documentation, Release 1.0

6 Chapter 2. Installation

CHAPTER 3

Usage

PyVESC serves two purposes:

1. Allows messages to be created and manipulated easily

2. Performs message encoding (to packet) and robust message decoding (to message object)

7

PyVESC Documentation, Release 1.0

8 Chapter 3. Usage

CHAPTER 4

Messages

Here is a list of the messages currently supported in PyVESC. Note that not all of VESC’s messages are implemented.
This is because we have only implemented the messages we use as we don’t want to distribute anything that hasn’t
been tested. If you need additional VESC messages, they are very easy to implement (and we’d greatly appreciate a
pull request after). For more infromation see Implementing Additional Messages.

It should be noted that all message objects can be created in 3 ways:

1. No constructor arguments

2. Variadic arguments (field values)

3. From decoding the next packet in a buffer

9

PyVESC Documentation, Release 1.0

10 Chapter 4. Messages

CHAPTER 5

Setter Messages

These are the setter messages which are currently implemented.

11

PyVESC Documentation, Release 1.0

12 Chapter 5. Setter Messages

CHAPTER 6

Getter Messages

These are the getters that are currently implemented.

13

PyVESC Documentation, Release 1.0

14 Chapter 6. Getter Messages

CHAPTER 7

Implementing Additional Messages

Here we’ll take a look at how to implement your own messages. You’re message class must have the metaclass
pyvesc.VESCMessage. In addition to this you must define two static attributes:

1. id (uint8): The ID for your message

2. fields (list of tuples): Declaration of the fields your message has. Each element in the list declares a field. The
first element of the field tuple is the name of the field (type: str), and the second element is the field type format
characters.

This is probably easiest explained with an example. Here is the declaration of the SetDutyCycle message.

class SetDutyCycle(metaclass=pyvesc.VESCMessage):
id = 5
fields = [

('duty_cycle', 'i')
]

That’s it! Taking a look at the declaration we see:

• The message’s ID is 5

• The message has a single field with a name duty_cycle and type int (this is what the format characters ‘i’ is)

If you are interested in the details of how this works, the pyvesc.VESCMessage metaclass has a registry of all its
children this registry is a dictionary with key’s being the messages ID and values being the messages class. This
metaclass also ensures that you define both fields and check that the ID is unique.

15

https://docs.python.org/3.5/library/struct.html#format-characters
https://docs.python.org/3.5/library/struct.html#format-characters
https://docs.python.org/3.5/library/struct.html#format-characters

PyVESC Documentation, Release 1.0

16 Chapter 7. Implementing Additional Messages

CHAPTER 8

Encoding

The following is the function call you should use to get a packet for your message.

pyvesc.encode(msg)
Encodes a PyVESC message to a packet. This packet is a valid VESC packet and can be sent to a VESC via
your serial port.

Parameters msg (PyVESC message) – Message to be encoded. All fields must be initialized.

Returns The packet.

Return type bytes

Encoding is done by first serializing the message object and then framing it in a VESC packet.

17

PyVESC Documentation, Release 1.0

18 Chapter 8. Encoding

CHAPTER 9

Decoding

The following is the function you should call to decode messages from the buffer.

pyvesc.decode(buffer)
Decodes the next valid VESC message in a buffer.

Parameters buffer (bytes) – The buffer to attempt to parse from.

Returns PyVESC message, number of bytes consumed in the buffer. If nothing was parsed returns
(None, 0).

Return type tuple: (PyVESC message, int)

Decoding is done by checking if the buffer has a full VESC packet which can be parsed. If it does then we begin
parsing it, else we return having consumed 0 bytes from the buffer. To parse a message we must parse the packet
payload, construct a message object from the payload’s ID and then fill the message’s fields values. In addition to this
we must ensure that if the integrity of the packet has been comprimised (by checking CRC or packet framing), we
properly handle recoving our location in the buffer so that subsequent packets are retained.

19

PyVESC Documentation, Release 1.0

20 Chapter 9. Decoding

CHAPTER 10

Contributing

Pull request are always welcome! If you have implemented any additional messages and tested that they are working
properly feel free to make a pull request so we can have it availible to everyone.

In addition to this, if you discover any bugs please create an issue so that we can resolve it for everyone.

Find our repository here: https://github.com/LiamBindle/PyVESC.

21

https://github.com/LiamBindle/PyVESC/issues/new
https://github.com/LiamBindle/PyVESC

PyVESC Documentation, Release 1.0

22 Chapter 10. Contributing

CHAPTER 11

License

PyVESC is distributed under a Creative Commons ShareALike 4.0 International License.

23

https://creativecommons.org/licenses/by-sa/4.0/

PyVESC Documentation, Release 1.0

24 Chapter 11. License

Index

D
decode() (in module pyvesc), 19

E
encode() (in module pyvesc), 17

25

	Quick Example
	Installation
	Usage
	Messages
	Setter Messages
	Getter Messages
	Implementing Additional Messages
	Encoding
	Decoding
	Contributing
	License
	Index

